The discovery of ionic current rectification (ICR) phenomena in synthetic nanofluidic systems elicits broad interest from interdisciplinary fields of chemistry, physics, materials science, and nanotechnology; and thus, boosts their applications in, for example, chemical sensing, fluidic pumping, and energy related aspects. So far, it is generally accepted that the ICR effect stems from the broken symmetry either in the nanofluidic structures, or in the environmental conditions. Although this empirical regularity is supported by numerous experimental and theoretical results, great challenge still remains to precisely figure out the correlation between the asymmetric ion transport properties and the degree of symmetry breaking. An appropriate and quantified measure is therefore highly demanded. Herein, taking DNA-stuffed nanopores as a model system, we systematically investigate the evolution of dynamic ICR in between two symmetric states. The fully stuffed and fully opened nanopores are symmetric; therefore, they exhibit linear ion transport behaviors. Once the stuffed DNA superstructures are asymmetrically removed from one end of the nanopore via aptamer-target interaction, the nanofluidic system becomes asymmetric and starts to rectify ionic current. The peak of ICR is found right before the breakthrough of the stuffed DNA forest. After that, the nanofluidic system gradually retrieves symmetry, and becomes non-rectified. Theoretical results by both the coarse-grained Poisson-Nernst-Planck model and the 1D statistic model excellently support the experimental observations, and further establish a quantified correlation between the ICR effect and the degree of asymmetry for different molecular filling configurations. Based on the ICR properties, we develop a proof-of-concept demonstration for sensing ATP, termed the ATP balance. These findings help to clarify the origin of ICR, and show implications to other asymmetric transport phenomena for future innovative nanofluidic devices and materials.