A novel metal-organic framework (MOF) material, MIL-100(Fe)-DMA, was synthesized using the solvothermal method. The structure of the MOF was characterized using scanning electron microscopy-energy dispersive X-ray spectroscopy, N2 adsorption–desorption isotherms, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy. Batch adsorption experiments were performed to investigate the effects of initial Sr2+ and Cs+ concentrations, adsorption time, pH, and coexisting cations on the adsorption performance of the material. The adsorption mechanism was further elucidated using adsorption kinetics and isotherm models. The results indicated that the adsorption of Sr2+ and Cs+ does not significantly affect the MOF material structure. As reaction time and initial ion concentration increased, the adsorption capacity of MIL-100(Fe)-DMA for Sr2+ and Cs+ increased rapidly and then gradually reached equilibrium. Optimal adsorption occurred under alkaline conditions, with maximum adsorption capacity observed at pH = 8. The adsorption process for Sr2+ and Cs+ was well described by the pseudo-second-order kinetic model, the Weber–Morris model, and the Langmuir adsorption isothermal model. The adsorption process was mainly identified as monolayer chemical adsorption, influenced by multiple factors. Characterization combined with density functional theory calculations revealed that the unsaturated carboxylic acid groups on the surface of the MOFs play a crucial role in the interaction with Sr2+ and Cs+.
Read full abstract