In high density multiple electrode array recordings, it is now possible to simultaneously measure spiking activity of a large number of single neurons in cultures. However, the connectivity and synaptic weights are not accessible, which makes it difficult to make a good comparison with simulated data. In fact, the spike pattern of a neuron strongly depends on its input, whereas the effect of changes in ion channel densities often makes only a small difference. Thus, to infer neuronal properties from such data, one needs to take into account its synaptic inputs. We stimulated a reduced neuron model based on the model of [1] with different Poisson spike trains and randomly permuted the synaptic weights, keeping the sum of weights constant. We then locally compared interspike interval (ISI) sequences between pairs of the resulting spike trains. This was done by ranking ISIs according to their lengths around different points in time, calculating the difference of those ranks and summing up the absolute value of the difference vector. We chose to compare ranks instead of absolute values as they depend less on the firing rate of the neuron. As a