The aim of the study was to isolate and identify a highly efficient cellulolytic bacteria strain that can be used in acidic environments, and then investigate its cellulase production characteristics for the effective utilization of agricultural waste. For this purpose, we set a series of isolation and screening steps, 21 strains were isolated from soil, and an acidophilic strain labeled as B13-2 with high cellulase production was screened using the Gram’ iodine method and cellulase activity assay; it was identified as Raoultella terrigena. Lastly, the culture conditions such as incubation time, incubation temperature, pH, carbon sources, nitrogen sources, and inoculum size were optimized via single-factor experiments, and on this basis, the cellulase production of strain B13-2 was optimized using response surface methodology with cellulase activity as the optimization goal. The results of the response surface optimization showed that the optimum incubation time is 3.1 days, the optimum temperature is 29.9 °C, the optimum pH is 4.1, and the optimum inoculum size is 1.50%, the cellulase activity reached a maximum of 13.503 U/mL, which was about 140% higher than that before optimization. In particular, strain B13-2 had higher cellulase production when rice straws were used as the natural carbon source. Meanwhile, the SEM pictures demonstrated that the surface of the substrate rice straws in an acidic buffer with strain B13-2 was uneven, with larger holes than in the neutral buffer after incubation. It further proved that this strain has a stronger ability to degrade cellulose under acidic conditions. The B13-2 is a kind of acidophilic cellulolytic bacteria. Therefore, it has the potential to be developed into a silage additive agent and provides a high-quality strain resource for the high-value biotransformation of agricultural waste and lays a certain foundation for the sustainable development of agricultural cultivation.
Read full abstract