Abstract

In this study, waxy corn starch was modified with 230 U or 460 U of amylosucrase (AS) from Neisseria polysaccharea (NP) to elongate the glucan. The amylose content of the AS-modified starches was determined using iodine and concanavalin A (Con A) methods, and their in vivo digestion, thermal, swelling, and pasting properties were evaluated. The amylose content of AS-treated starches was not significantly different (p > 0.05) when using the Con A method but was significantly higher than that of non-AS-treated samples when using the iodine method. In vivo, rats fed AS-treated starch had significantly lower blood glucose levels at 15 min than other rats; rats fed 460 U AS had lower blood glucose levels at 30 and 60 min than non-AS-treated rats. DSC analysis revealed that AS-treated starches exhibited higher initial, melting, and completion temperatures. Minimal volume expansion was observed by swelling factor analysis, while a Rapid Visco Analyzer assessment revealed that they had higher pasting onset temperatures, lower peak viscosities, and no trough viscosity compared to native starch. The elongated glucans in AS-treated starch reinforced their crystalline structure and increased slowly digestible and enzyme-resistant starch content. Overall, AS-treated starch showed unique thermal properties and a reduced blood glucose index upon administration. This distinctive characteristic of NPAS-treated starch makes it a good candidate food or non-food material for cosmetic products, medical materials, and adhesives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call