Calcitonin gene-related peptide (CGRP) and its family members adrenomedullin (ADM) and adrenomedullin 2 (ADM2; also known as intermedin) support vascular adaptions in rat pregnancy. This study aimed to assess the relaxation response of uterine artery (UA) for CGRP, ADM, and ADM2 in nonpregnant and pregnant women and identify the involved mechanisms. (1) Segments of UA from nonpregnant women that were precontracted with U46619 (1μM) in vitro are insensitive to the hypotensive effects of CGRP, ADM, and ADM2; (2) CGRP, ADM, and ADM2 (0.1-100nM) dose dependently relax UA segments from pregnant women with efficacy for CGRP > ADM = ADM2; (3) the relaxation responses to CGRP, ADM, and ADM2 are differentially affected by the inhibitors of nitric oxide (NO) synthase (L-NAME), adenylyl cyclase (SQ22536), apamin, and charybdotoxin; (4) UA smooth muscle cells (UASMC) express mRNA for calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein (RAMP)1 and RAMP2 but not RAMP3; (5) receptor heterodimer comprising CRLR/RAMP1 and CRLR/RAMP2 but not CRLR/RAMP3 is present in UA; (6) soluble fms-like tyrosine kinase (sFLT-1) and TNF-α treatment decrease the expression of RAMP1 mRNA (P < 0.05) in UASMC; and (7) sFLT-1 treatment impairs the association of CRLR with all 3 peptides while TNF-α inhibits the interaction of CGRP but not ADM or ADM2 with CRLR in UASMC (P < 0.05). Relaxation sensitivity of UA for CGRP, ADM, and ADM2 is increased during pregnancy via peptide-specific involvement of NO system and endothelium-derived hyperpolarizing factors; vascular disruptors such as sFLT-1 and TNFα adversely impact their receptor system in UASMC.
Read full abstract