Sugarcane is the main sugar crop, and sugar is an important agricultural product in Egypt. There are many problems with the technology used in the current planting method of sugarcane, which has a great impact on the planting quality of sugarcane, which have a series of problems, such as low cutting efficiency and poor quality. Therefore, the aim of the current study was to design, construct, and field testing of a semiautomatic sugarcane bud chipper assisted with pivot knives for cutting sugarcane buds and germinating them in plastic trays inside a greenhouse until they reached an average length of 35 cm, and then planting them in the field. In the field tests five cutting speeds (35, 40, 45, 50, and 56 rpm. (Revolution Per minute), three cutting knives (1.5, 2.0, and 2.5 mm) were used for cutting sugarcane stalks with four different diameters (1.32, 1.82, 2.43, and 2.68 cm). The obtained results showed that the values of the damage index and invisible losses were within acceptable limits (ranging between − 1.0 and 0.0) for all the variables under the test. Still, the lowest damage index and invisible losses were recorded with the buds that were cut with a knife of 1.5 mm thickness and cutting speeds less than 50 rpm. The skipping rate increases with the increase in cutting speed and stalk diameter, ranging between 0.0 to 13%. The maximum machine productivity was 110 Buds per minute at a cutting speed of 35 rpm and stalk diameter of 1.32 cm. The paper's findings have important application values for promoting the designing and development of sugarcane bud chipper and sugarcane planting technology in the future.
Read full abstract