Estimates for pressures on the surface of a given delta wing at zero incidence in a steady uniform stream of air are obtained by numerically integrating two semi-characteristic forms of equations which govern the inviscid supersonic flow of an ideal gas with constant specific heats. In one form of the equations coordinate surfaces are fixed in space so that the surface of the wing, which has round sonic leading edges, is a coordinate surface. In the other, two families of coordinates are chosen to be stream-surfaces. For each form of the equations, a finite difference method has been used to compute the supersonic flow around the wing. Convergence of the numerical results, as the mesh is refined, is slow near the leading edge of the wing and an extrapolation procedure is used to predict limiting values for the pressures on the surface of the wing at two stations where theoretical and experimental results have been given earlier by another worker. At one station differences between the results given here and the results given earlier are significant. The two methods used here produce consistent values for the pressures on the surface of the wing and, on the basis of this numerical evidence together with other cited numerical results, it is concluded that the pressures given here are close to the true theoretical values.
Read full abstract