Investors in financial markets are often at a loss when facing a huge range of products. For financial institutions also, how to recommend products to the right investors, especially those without previous investment records is problematic. In this paper, we develop and apply a personalized recommendation system for the equity funds market, based on the idea of transfer learning. First, using modern portfolio theory, a profile of equity funds and investors is created. Then, the profile of investors in the stock market is applied to the fund market by the idea of transfer learning. Finally, a utility-based recommendation algorithm based on prospect theory is proposed and the performance of the method is verified by testing it on actual transaction data. This study provides a reference for financial institutions to recommend products and services to the long tail customers.
Read full abstract