We prove an equivariant version of the Cosmetic Surgery Conjecture for strongly invertible knots. Our proof combines a recent result of Hanselman with the Khovanov multicurve invariants Kh~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\widetilde{{{\\,\ extrm{Kh}\\,}}}}$$\\end{document} and BN~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\widetilde{{{\\,\ extrm{BN}\\,}}}}$$\\end{document}. We apply the same techniques to reprove a result of Wang about the Cosmetic Crossing Conjecture and split links. Along the way, we show that Kh~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\widetilde{{{\\,\ extrm{Kh}\\,}}}}$$\\end{document} and BN~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\widetilde{{{\\,\ extrm{BN}\\,}}}}$$\\end{document} detect if a Conway tangle is split.