Abstract

For a 3-manifold with torus boundary admitting an appropriate involution, we show that Khovanov homology provides obstructions to certain exceptional Dehn fillings. For example, given a strongly invertible knot in S 3, we give obstructions to lens space surgeries, as well as obstructions to surgeries with finite fundamental group. These obstructions are based on homological width in Khovanov homology, and in the case of finite fundamental group depend on a calculation of the homological width for a family of Montesinos links.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.