In this paper, using panel data of 28 cities in the middle reaches of the Yangtze River from 2003 to 2020 as the research sample, we built a dynamic spatial Durbin model based on the STIRPAT (stochastic impacts by regression on population, affluence, and technology) model and conducted an empirical study on the impact of the coordinated agglomeration of manufacturing and producer services on particulate matter (PM) 2.5 pollution. The results show a significant positive spatial spillover effect of PM2.5 pollution in the middle reaches of the Yangtze River. The coordinated agglomeration of manufacturing and producer services in the urban agglomerations there is conducive to reducing PM2.5 pollution. Similar to the inverted-U curve of the classic environmental Kuznets curve hypothesis, there is a significant inverted-U curve relationship between PM2.5 pollution and economic growth in urban agglomerations in the middle reaches of the Yangtze River. The proportion of coal consumption, the proportion of secondary industry, and the urbanization level are significantly and positively correlated with PM2.5 pollution in urban agglomerations in this area. Technological innovation, environmental regulation, and annual average humidity play an important role in addressing the PM2.5 pollution and spatial spillover effect. Industrial structure and technological innovation are the main ways for the coordinated agglomeration of manufacturing and producer services to affect PM2.5. The research conclusion can be of great practical significance to optimize the regional industrial layout, control PM2.5 pollution, and establish a sustainable development policy system in the middle reaches of the Yangtze River in China.
Read full abstract