The earliest genes in bacterial flagellar assembly are activated by narrowly-conserved proteins called master regulators that often act as heteromeric complexes. A complex of SwrA and the response-regulator transcription factor DegU is thought to form the master flagellar regulator in Bacillus subtilis but how the two proteins co-operate to activate gene expression is poorly-understood. Here we find using ChIP-Seq that SwrA interacts with a subset of DegU binding sites in the chromosome and does so in a DegU-dependent manner. Using this information, we identify a DegU-specific inverted repeat DNA sequence in the Pflache promoter region and show that SwrA synergizes with DegU phosphorylation to increase binding affinity. We further demonstrate that the SwrA/DegU footprint extends from the DegU binding site towards the promoter, likely through SwrA-induced DegU multimerization. The location of the DegU inverted repeat was critical and moving the binding site closer to the promoter impaired transcription by disrupting a previously-unrecognized upstream activation sequence (UAS). Thus, the SwrA-DegU heteromeric complex likely enables both remote binding and interaction between the activator and RNA polymerase. Small co-activator proteins like SwrA may allow selective activation of subsets of genes where activator multimerization is needed. Why some promoters require activator multimerization and some require UAS sequences is unknown.