Bimetallic nanoparticles (NPs) are considered superior in terms of stability and function with respect to its monometallic counterparts. Hence, in the present study Hibiscus rosa-sinensis flower extract was used to synthesis copper-iron bimetallic nanoparticles (HF-FCNPs). HF-FCNPs was characterized and its applications (biological and environmental) were determined. HF-FCNPs were spherical in shape with high percentage of copper inducted into the NPs. HF-FCNPs inhibited mammalian glucosidases [maltase (IC50: 548.71 ± 61.01µg/mL), sucrase (IC50: 441.34 ± 36.03µg/mL), isomaltase (IC50: 466.37 ± 27.09µg/mL) and glucoamylase (IC50: 403.12 ± 14.03µg/mL)], alpha-amylase (IC50: 16.27 ± 1.73µg/mL) and acetylcholinesterase [AChE (IC50: 0.032 ± 0.004µg/mL)] activities. HF-FCNPs showed competitive inhibition against AChE, maltase and sucrase activities; mixed inhibition against isomaltase and glucoamylase activities; whereas non-competitive inhibition against α-amylase activity. HF-FCNPs showed zone of inhibition of 16 ± 2mm against S. mutans at 100µg/mL concentration. HF-FCNPs inhibited biofilm formation of dental pathogen, S. mutans. SEM and confocal microscopy analysis revealed the disruption of network formation and bacterial cell death induced by HF-FCNPs treatment on tooth model of S. mutans biofilm. HF-FCNPs efficiently removed hexavalent chromium in pH-independent manner and followed first order kinetics. Through Langmuir isotherm fit the qmax (maximum adsorption capacity) was determined to be 62.5mg/g. Further, HF-FCNPs removed both anionic and cationic dyes. Altogether, facile synthesis of HF-FCNPs was accomplished and its biological (enzyme inhibition and antibiofilm activity) and environmental (catalyst to remove pollutants) applications have been understood.