This study reports the observation and characterization of two isomers of the acrolein dimer by using high-resolution rotational spectroscopy in pulsed jets. The first isomer is stabilized by two hydrogen bonds, adopting a planar configuration, and is energetically favored over the second isomer, which exhibits a dominant n → π* interaction in a nearly orthogonal arrangement. Surprisingly, the n → π* interaction was revealed to enable a concerted tunneling motion of two moieties along the carbonyl group. This motion leads to the inversion of transient chirality associated with the exchange of donor-acceptor roles, as revealed by the spectral feature of quadruplets. Inversion of transient chirality is a fundamental phenomenon in quantum mechanics and commonly observed for only inversional motions of protons. It is the first discovery, to the best of our knowledge, that such heavy moieties can also undergo chirality inversion.
Read full abstract