The construction of accurate anisotropic velocity models is essential for effective microseismic monitoring in hydraulic fracturing. Ignoring anisotropy can result in significant distortions in microseismic event locations and their interpretation. Although methods exist to simultaneously invert anisotropic parameters and event locations using microseismic arrival times, the results heavily depend on accurate initial models and sufficient ray coverage due to strong trade-offs among multiple parameters. Microseismic waveform inversion for anisotropic parameters remains challenging due to the low signal-to-noise ratio of the data and the high computational cost. To address these challenges, we propose a method for jointly inverting event locations and velocity updates based on arrival times and vertical slowness estimates, under the assumption of small horizontal velocity variations. Vertical slowness estimates, which are independent of source information and easily obtainable, provide an additional constraint that enhances inversion stability. We test the proposed method in four synthetic examples under various conditions. The results demonstrate that incorporating vertical slowness effectively constrains and stabilizes conventional travel-time inversion, especially in scenarios with poor raypath coverage. Additionally, we apply this method to a field case and find that it produces more reasonable event locations compared to inversions using arrival times alone. This joint inversion method can enhance the accuracy of anisotropic structures and event locations, which thus help with fracture characterization in tight and low-permeability reservoirs. It may serve as an effective downhole monitoring approach for hydrocarbon and geothermal energy production.
Read full abstract