In this work, the sign distribution for all inverse elements of general tridiagonal H-matrices is presented. In addition, some computable upper and lower bounds for the entries of the inverses of diagonally dominant tridiagonal matrices are obtained. Based on the sign distribution, these bounds greatly improve some well-known results due to Ostrowski (1952) 23, Shivakumar and Ji (1996) 26, Nabben (1999) 21,22 and recently given by Peluso and Politi (2001) 24, Peluso and Popolizio (2008) 25 and so forth. It is also stated that the inverse of a general tridiagonal matrix may be described by 2 n - 2 parameters ( { Ξ k } k = 2 n and { Ï k } k = 1 n - 1 ) instead of 2 n + 2 ones as given by El-Mikkawy (2004) 3, El-Mikkawy and Karawia (2006) 4 and Huang and McColl (1997) 10. According to these results, a new symbolic algorithm for finding the inverse of a tridiagonal matrix without imposing any restrictive conditions is presented, which improves some recent results. Finally, several applications to the preconditioning technology, the numerical solution of differential equations and the birthâdeath processes together with numerical tests are given.
Read full abstract