A general method for solving the inverse diffraction problem is presented. It is based on an identity of Bojarski which states that <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\gamma(x)</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\Gamma(p)</tex> are a Fourier transform pair. Here <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\gamma(x)</tex> is the characteristic function of the target ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\gamma=1</tex> inside the target, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\gamma = 0</tex> outside), <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p = (2\omega/c)J,\omega</tex> is the frequency, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">J</tex> is a unit vector specifying the aspect, and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\Gamma(P)</tex> can be obtained by measurement of the backscattered electromagnetic far field at frequency <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\omega = (c/2)|P|</tex> and aspect <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">J=|p|^{-1}p</tex> . If data is obtained in any subset <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</tex> of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</tex> space, the method yields partial or complete information about the target geometry. It is used to rederive earlier results very simply and to obtain a significant new solution, in which the target geometry is completely determined using frequencies only in a practical frequency band and aspects in a narrow cone.
Read full abstract