Background:Plants, including invasive ones, can play a significant role in the fight against antibiotic resistance and the search for new antimicrobials.Aims:The present study aimed at assessing the antimicrobial activity, antibioresistance reversal properties, and toxicity of four samples from invasive plants, namely, Heracleum mantegazzianum (leaves and flowers), Chenopodium album (leaves), and Centaurea jacea (flowers).Methods:The extraction of active compounds was done with ethanol (80%, v/v) and the extraction yields were calculated. Antimicrobial activity was studied using the agar-well diffusion method against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, and Candida albicans ATCC 10231. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were determined using the mircodilution method. The antibioresistance reversal properties were assessed using the checkerboard method and the toxicity of the extracts was studied using the larval form of the Greater Wax Moth (Galleria mellonella).Results:The mass yields were 11.9, 15.0, 18.2, and 21.5, respectively, for C. jacea flower (CJF), H. mantegazzianum flower (HMF), H. mantegazzianum leaf (HML), and C. album leaf (CAL). The highest inhibition diameters (ID) were found with HMF, CAL, CJF, and HML against S. aureus with 26.6, 21.6, 21.0, and 20.0 mm, respectively. Only CJF and HMF were active against E. coli with respective ID of 15.3 and 19.0 mm. Except HMF (ID = 13.6 ± 2.0 mm), no other extract was active against C. albicans. Moreover, HMF exhibited the lowest MIC (0.5 mg/ml) and the lowest MBC (1 and 4 mg/ml) against both S. aureus and E. coli. Regarding the synergy test, an additional effect [0.5 ≤ fractional inhibitory concentration (FIC) ≤ 1] was found in almost all the combinations antibiotics + extracts excepted for HMF + (Kanamycin or Ampicillin) against S. aureus and CJF + Ampicillin against E. coli where we found synergy effect (FIC ≤0.5). The median lethal doses (LD50s) of HMF, HML, CAL, and CJF were 20.2, 0.58, 13.2, and 4.0 mg/ml, respectively.Conclusion:Only the ethanolic extract of HMFs showed noteworthy broad spectrum antimicrobial activity.