Abstract An algebra is bicommutative if it satisfies left and right symmetries; i.e., $$a(bc)=b(ac)$$ a ( b c ) = b ( a c ) and $$(ab)c=(ac)b$$ ( a b ) c = ( a c ) b . Let K be a field of characteristic zero, and $$M_n$$ M n , $$n\ge 3$$ n ≥ 3 , be the free metabelian bicommutative algebra generated by a set $$X_n=\{x_1,\ldots ,x_n\}$$ X n = { x 1 , … , x n } of variables, in which the identity $$(xy)(zt)=0$$ ( x y ) ( z t ) = 0 is being satisfied. We define the action of the alternating group $$A_n$$ A n on $$M_n$$ M n as follows. $$\pi f(x_1,\ldots ,x_n)=f(x_{\pi (1)},\ldots ,x_{\pi (n)})$$ π f ( x 1 , … , x n ) = f ( x π ( 1 ) , … , x π ( n ) ) , where $$\pi \in A_n$$ π ∈ A n and $$f\in M_n$$ f ∈ M n . The set $$M_n^{A_n}=\{f\in M_n\mid \pi f=f\ , \forall \pi \in A_n\}$$ M n A n = { f ∈ M n ∣ π f = f , ∀ π ∈ A n } is a subalgebra of $$M_n$$ M n called the algebra of invariants of the group $$A_n$$ A n . In the first part of this study, we describe the elements of the algebra $$M_n^{A_n}$$ M n A n . We also give the description of the algebras $$M_2^{C_2}$$ M 2 C 2 , $$M_2^{C_3}$$ M 2 C 3 , $$M_2^{C_2\times C_2}$$ M 2 C 2 × C 2 , and $$M_2^{C_4}$$ M 2 C 4 of invariants of the groups $$C_2$$ C 2 , $$C_3$$ C 3 , $$C_2\times C_2$$ C 2 × C 2 , and $$C_4$$ C 4 of order up to 4, respectively, as a subgroups of the general linear group $$\text {GL}_2(K)$$ GL 2 ( K ) .
Read full abstract