This paper deals with the constrained state regulation problem (CSRP) of descriptor fractional-order linear continuous-time systems (DFOLCS) with order 0<α<1. The objective is to establish the existence of conditions for a linear feedback control law within state constraints and to propose a method for solving the CSRP of DFOLCS. First, based on the decomposition and separation method and coordinate transformation, the DFOLCS can be transformed into an equivalent fractional-order reduced system; hence, the CSRP of the DFOLCS is equivalent to the CSRP of the reduced system. By means of positive invariant sets theory, Lyapunov stability theory, and some mathematical techniques, necessary and sufficient conditions for the polyhedral positive invariant set of the equivalent reduced system are presented. Models and corresponding algorithms for solving the CSRP of a linear feedback controller are also presented by the obtained conditions. Under the condition that the resulting closed system is positive, the given model of the CSRP in this paper for the DFOLCS is formulated as nonlinear programming with a linear objective function and quadratic mixed constraints. Two numerical examples illustrate the proposed method.