To determine mechanisms of blood vessel formation and growth in solid tumors, we used a model in which LS174T human colon adenocarcinomas are grown in the isolated ovarian pedicle of nude mice. Reconstruction of 3500 histological serial sections demonstrated that a new vascular network composed of venous-venous loops of varying sizes grows inside the tumor from the wall of the adjacent main vein. Loops elongate and remodel to establish complex loop systems. The mechanisms of loop formation and remodeling correspond to intussusceptive microvascular growth (IMG). In the tissue surrounding the tumor segmentation, another mechanism of IMG is prevalent in venous vessels. Comparison to vascular morphogenesis in the ovariectomized pedicle not only confirms the existence of corresponding mechanisms in both systems, but also reveals numerous sprouts that are superimposed onto loop systems and pathological deviations of loop formation, remodeling, and segmentation in the tumor. These pathological mechanisms interfere with vessel patency that likely cause heterogenous perfusion and hypoxia thus perpetuating angiogenesis. Blood vessel formation based on IMG was also detected in a large thrombus that completely occluded a part of an ovarian artery branch.
Read full abstract