AbstractHome ranges (HRs), the regions within which animals interact with their environment, constitute a fundamental aspect of their ecology. HR sizes and locations commonly reflect costs and benefits associated with diverse social, biotic, and abiotic factors. Less is known, however, about how these factors affect intraspecific variation in HR size or fidelity (the individual's tendency to maintain the same HR location over time) or whether variation in these features emerge from consistent differences among individuals or among the sites they occupy. To address this knowledge gap, we used an extensive GPS‐tracking data set of a long‐lived lizard, the sleepy lizard (Tiliqua rugosa), which included repeated observations of multiple individuals across years. We tested how three categories of predictors—(1) lizard characteristics (sex, aggressiveness, and parasitic tick counts), (2) environmental characteristics (precipitation, food, and refuge quality), and (3) social conditions (conspecific overlap and number of neighbors)—affected HR size and fidelity. We found that individuals differed consistently in the size and fidelity of annual HRs (with a repeatability of 0.58 and 0.33, respectively), and that all three categories of predictors affected both HR size and fidelity. For example, HRs were smaller in areas with more food, and males had larger HRs than females. In addition, more aggressive lizards tended to have larger HRs. Conspecific overlap and number of individuals that a lizard interacted with (social network degree) had an interactive effect on HR size where individuals whose HRs overlapped more with neighbors had larger HRs, and this effect was particularly strong for individuals that interacted with more neighbors. HR fidelity declined over time (HR locations drifted from year to year), but individuals differed consistently in this rate of drift. The fact that HR size was consistent despite drifting locations suggests that lizard HRs reflect individual traits (e.g., habitat choice criteria that differ among individuals), rather than simple heterogeneity among sites. Overall, these findings demonstrate (1) both strong, long‐term, within‐individual consistency and between‐individual differences in space use and (2) combined effects of individual traits, social conditions, and environmental characteristics on animal HRs, with implications for diverse ecological processes.