We present a two-dimensional (2D) electrically conductive metal-organic framework (EC-MOF)-based artificial synapse. The intrinsic electronic conductivity and subnanometer channels of the EC-MOF facilitate efficient ion diffusion, enable a high density of active redox centers, and significantly enhance capacitance within the artificial synapse. As a result, the synapse operates at an ultralow voltage of 10 mV and exhibits a remarkably low power consumption of approximately 1 fW, along with the longest retention time recorded for two-terminal electrolyte-type artificial synapses to date. The alignment of the quantum size of the subnanometer pores in the EC-MOF with various cations allows for versatile synaptic plasticity. This capability is applied to image refresh, classification, and efferent signal transmission for controlling artificial muscles, thereby offering a methodology for achieving tunable neuromorphic properties. These findings suggest the potential application of metal-organic frameworks in artificial nervous systems for future brain-inspired computation, peripheral interfaces, and neurorobotics.
Read full abstract