Abstract
Polyoxometalates (POMs) have been considered one of the most promising anode candidates for lithium-ion batteries (LIBs) in virtue of their high theoretical capacity and reversible multielectron redox properties. However, the poor intrinsic electronic conductivity, low specific surface area, and high solubility in organic electrolytes hinder their widespread applications in LIBs. Herein, a novel hybrid nanomaterial is synthesized by co-assembling POMs and porphyrins (PMo12/CoTPyP) through a facile solvothermal method. The POM clusters are stabilized by porphyrin units through electrostatic interactions, which simultaneously realize the uniform dispersion of POMs and porphyrin units. Benefiting from the generated sub-1nm channels for fast ion transport and the synergistic effect between evenly distributed PMo12 clusters and high-conductive CoTPyP units, the LIB based on the optimized PMo12/CoTPyP anode exhibits significantly improved Li+ storage capability as well as superior rate and cycling performance. The results of density functional theory simulations further reveal that the co-assembly of PMo12 and CoTPyP can accelerate the mobility of Li+ and electrons, which in turn promotes the enhancement of LIBs performance. This work paves a strategy for synthesizing POMs-based anode materials with simultaneously high dispersibility, redox activity, and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.