This study designed a series of TiVNbMoCr alloys under the VEC constraint. Based on the thermodynamic calculation, the precipitation behavior was predicted, and the precipitation strengthening was experimentally investigated and discussed. The results showed that below 600°C, the designed alloys with VEC from 4.30 to 4.60 are metastable at a single β phase state. With low VEC, the HCP-structured α phase precipitates from the BCC-structured β phase with a coherent interface between them. With high VEC, TiCr2 (C15-Laves phase) precipitates from the β phase companying with the α phase. The prediction results are well consistent with the experimental results. Aged at 400°C for 60h, the alloys with VEC of 4.30 and 4.35 contained large volume fraction of the large-sized α phase, playing a great role in strengthening. The alloys with VEC of 4.55 and 4.60 exhibited small-sized precipitation particles acting in strengthening in terms of the Orowan mechanism, and the yield strength depends mainly on the volume fraction and size of precipitation particles, as well as the intrinsic strength of the β matrix that can be predicted by the Varvenne model based on the MD calculation. To some extent, the intrinsic ductility of the β matrix determines the tensile plasticity of the alloys with high VEC. Although favoring for strengthening, more TiCr2 precipitates are not conducive to tensile plasticity.
Read full abstract