The visuomotor transformation during a goal-directed movement may involve a coordinate transformation from visual ‘extrinsic’ to muscle-like ‘intrinsic’ coordinate frames, which might be processed via a multilayer network architecture composed of neural basis functions. This theory suggests that the postural change during a goal-directed movement task alters activity patterns of the neurons in the intermediate layer of the visuomotor transformation that recieves both visual and proprioceptive inputs, and thus influence the multi-voxel pattern of the blood oxygenation level dependent signal. Using a recently developed multi-voxel pattern decoding method, we found extrinsic, intrinsic and intermediate coordinate frames along the visuomotor cortical pathways during a visuomotor control task. The presented results support the hypothesis that, in human, the extrinsic coordinate frame was transformed to the muscle-like frame over the dorsal pathway from the posterior parietal cortex and the dorsal premotor cortex to the primary motor cortex.
Read full abstract