Abstract

The visuomotor transformation during a goal-directed movement may involve a coordinate transformation from visual ‘extrinsic’ to muscle-like ‘intrinsic’ coordinate frames, which might be processed via a multilayer network architecture composed of neural basis functions. This theory suggests that the postural change during a goal-directed movement task alters activity patterns of the neurons in the intermediate layer of the visuomotor transformation that recieves both visual and proprioceptive inputs, and thus influence the multi-voxel pattern of the blood oxygenation level dependent signal. Using a recently developed multi-voxel pattern decoding method, we found extrinsic, intrinsic and intermediate coordinate frames along the visuomotor cortical pathways during a visuomotor control task. The presented results support the hypothesis that, in human, the extrinsic coordinate frame was transformed to the muscle-like frame over the dorsal pathway from the posterior parietal cortex and the dorsal premotor cortex to the primary motor cortex.

Highlights

  • Performing a visuomotor transformation is essential to allow the brain to produce motor commands to generate a goal-directed movement toward a visual target

  • In advance of this fMRI experiment, we identified the coordinate frame of the wrist muscles of human participants, which was estimated as the rotation angle of the preferred direction (PD) of the wrist muscles caused by a posture change

  • By conducting the decoding analysis, we identified both the coordinate frame used in each cortical area

Read more

Summary

Introduction

Performing a visuomotor transformation is essential to allow the brain to produce motor commands to generate a goal-directed movement toward a visual target. A model prediction of a neural network model of visuomotor transformation[4,5,6] is compatible with measurements of the gain field of the PPC neurons, whose tuning functions are modulated by the hand location and the eye location[7,8] Extrapolating from these computational models, the neurons of the input layer represents information either on the intrinsic ‘proprioceptive’ coordinate frames or the extrinsic ‘visual’ coordinate frames and those of the output layer represents it on the intrinsic ‘muscle’ coordinate frames while the neurons of intermediate layer does not rely on any explicit coordinate frame but, as a result of integration of two input layers, it appears to depend on an intermediate coordinate frames. This alters the multi-voxel activity pattern of the cortical area that encodes information in the intrinsic (muscle-like) coordinate frame, but preserves it in the area that encodes information in the extrinsic coordinate frame

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.