To investigate the value of fat-suppression (FS) T2 relaxation time (T2RT) derived from FS T2 mapping and water fraction (WF) derived from T2 IDEAL to predict the treatment response to intravenous glucocorticoids (IVGC) in patients with thyroid-associated ophthalmopathy (TAO) based on texture analysis. In this study, 89 patients clinically diagnosed with active and moderate-to-severe TAO were enroled (responsive group, 48 patients; unresponsive group, 41 patients). The baseline clinical characteristics and texture features were compared between the two groups. Multivariate analysis was performed to identify the independent predictors of treatment response to IVGC. ROC analysis and the DeLong test were used to assess and compare the predictive performance of different models. The responsive group exhibited significantly shorter disease duration and higher 90th percentile of FS T2RT and kurtosis of WF in the extraocular muscle (EOM) and 95th percentile of WF in the orbital fat (OF) than the unresponsive group. Model 2 (disease duration + WF; AUC, 0.816) and model 3 (disease duration + FS T2RT + WF; AUC, 0.823) demonstrated superior predictive efficacy compared to model 1 (disease duration + FS T2RT; AUC, 0.756), while there was no significant difference between models 2 and 3. The orbital tissues of responders exhibited more oedema and heterogeneity. Furthermore, OF is as valuable as EOM for assessing the therapeutic efficacy of IVGC. Finally, WF derived from T2 IDEAL processed by texture analysis can provide valuable information for predicting the treatment response to IVGC in patients with active and moderate-to-severe TAO. The texture features of FS T2RT and WF are different between responders and non-responders, which can be the predictive tool for treatment response to IVGC. Texture analysis can be used for predicting response to IVGC in TAO patients. TAO patients responsive to IVGC show more oedema and heterogeneity in the orbital tissues. WF from T2 IDEAL is a tool to predict the therapeutic response of TAO.
Read full abstract