BackgroundIntracavernous injection of mesenchymal stem cells (MSCs) is a promising method for diabetic mellitus-induced erectile dysfunction (DMED), but short survival time of MSCs in cavernous is a fatal defect for therapy. This study investigated therapeutic efficiency and potential mechanism of probucol combined with MSCs.MethodsIn vivo study, a total of forty-eight 10-week-old male Sprague-Dawley (SD) rats were used. Twelve rats received intraperitoneal injection of PBS as the sham group; the rest received intraperitoneal injection of 60 mg/kg streptozotocin to establish DM models. DM rats were randomly divided into three groups: received intracavernosal (IC) injection of either PBS (DM group), MSCs (M group), or administrated probucol after intracavernosal injection of MSCs (P + M group). Erectile function was assessed by electrical stimulation of the cavernous nerves with real-time intracavernous pressure measurement. After euthanasia, penile tissue was investigated for histologic examination and Western blotting. In in vitro experiment, H2O2 was used to create oxidative stress environment to detect changes in cell viability. CCK8 was used to measure cell viability of MSCs treated with or without probucol. Intracellular ROS changes were detected by flow cytometry. Autophagy and apoptosis were detected by Western blotting and confocal microscopy.ResultsRecovery of erectile function was observed in the P + M group. The combination therapy decreased fibrosis and increased endothelial function compared with MSC therapy alone. Western blotting results confirmed the increased expression of Nrf2 and HO-1 in cavernous body. H2O2 induced high oxidative stress and reduced cell viability in vitro, which was gradually reversed with increased concentration of probucol. H2O2 reduced Nrf2 expression, which was reversed by probucol’s intervention. Furthermore, the expression of Bax, Caspase3, and Cleaved-Caspase3 decreased, and the expression of Bcl-2 increased in a dose-dependent manner because of probucol’s intervention. In addition, Beclin1 and LC3II both increased in a dose-dependent manner. Meanwhile, the expression of P62 decreased. In the study of autophagy flux, we found probucol did not block it.ConclusionProbucol enhanced therapeutic efficiency of MSCs in DMED by prolonging their survival time, which mediated through improving the transplanted microenvironment of MSCs, increasing self-antioxidant ability of MSCs, strengthening protective autophagy, and inhibiting apoptosis of MSCs via Nrf2 pathway.Graphical abstractSchematic model showing combined probucol and MSCs to improve DMED. Probucol increases self-antioxidant ability of MSCs, strengthening protective autophagy and inhibiting apoptosis via Nrf2/HO-1 and Nrf2/autophagy pathways.
Read full abstract