The aim of this study was to investigate the potential therapeutic efficacy of chrysin (CHS) against ovotoxicity caused by intraperitoneal administration of cisplatin (CDDP) in rats. In this experimental study, 24 female rats were randomly divided into four groups: control, CHS (2 mg/kg), CDDP (5 mg/kg) and CDDP (5 mg/kg) + CHS (2 mg/kg). The levels of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), interleukin-6 (IL-6) and myeloperoxidase (MPO) were determined in the ovarian tissues using spectrophotometric methods. In addition, the ovarian samples were evaluated histopathologically by hematoxylin&eosin staining. The results revealed that the levels of MDA, TOS, IL-6 and MPO significantly increased by CDDP administration compared with control group (p < 0.05). Also, it was found that CDDP significantly decreased TAS and SOD levels (p < 0.05). CHS ameliorated CDDP-induced the increased levels of MDA, TOS, IL-6, MPO and increased the levels of TAS and SOD significantly (p < 0.05). Histological findings also supported the therapeutic effect of CHS against CDDP-induced ovarian damage parameters. In conclusion, our results showed that CHS exhibits a therapeutic effect against CDDP-induced ovotoxicity and therefore the use of CHS after chemotherapy may improve the side effets of CDDP. IMPACT STATEMENT What is already known about this subject? Cisplatin (CDDP) is an effective and widely used chemotherapeutic agent to treat various malignancies, but its therapeutic use is limited due to dose-related tissue toxicity. Chrysin (CHS), a natural flavone, exhibits various beneficial activities, including antioxidant, anti-inflammatory and anticancer. There are increasing evidences in the literature that CHS reduces the toxicity of various chemotherapeutic agents, such as CDDP, doxorubicin and cyclophosphamide, in colon, kidney and liver tissues through its antioxidant and anti-inflammatory potential. What do the results of this study add? This study demonstrated that CHS can abolish CDDP-induced in vivo ovarian injury by decreasing MDA, TOS, IL-6 and MPO levels and increasing SOD and TAS levels through its antioxidant and anti-inflammatory potential. What are the implications of these findings for clinical practice and/or further research? This study revealed the therapeutic potential of CHS against CDDP-induced acute ovotoxicity, for the first time. Further pre-clinical studies are necessary to prove the beneficial effect of CHS on the prevention of CDDP-induced ovarian toxicity.
Read full abstract