Two new isostructural tellurites, Pb(4)Te(6)M(10)O(41) (M = Nb(5+) or Ta(5+)), have been synthesized by standard solid-state techniques using PbO, Nb(2)O(5) (or Ta(2)O(5)), and TeO(2) as reagents. The structures of Pb(4)Te(6)Nb(10)O(41) and Pb(4)Te(6)Ta(10)O(41) were determined by single-crystal and powder X-ray diffraction. The materials exhibit a three-dimensional framework consisting of layers of corner-shared NbO(6) octahedra connected by TeO(3) and PbO(6) polyhedra. The Nb(5+), Te(4+), and Pb(2+) cations are in asymmetric coordination environments attributable to second-order Jahn-Teller effects. The Nb(5+) cations undergo an intraoctahedral distortion either toward a face or a corner, whereas the Te(4+) and Pb(2+) cations are in distorted environments attributable to their lone pair. In addition, the TeO(3) polyhedra strongly influence the direction of the Nb(5+) intraoctahedral distortion. Infrared and Raman spectroscopy, thermogravimetric analysis, and dielectric measurements are also presented. Crystal data: Pb(4)Te(6)Nb(10)O(41), monoclinic, space group C2/m (No. 12), with a = 23.412(3) A, b = 20.114(3) A, c = 7.5008(10) A, beta = 99.630(4) degrees, V = 3482.4(8) A(3), and Z = 4; Pb(4)Te(6)Ta(10)O(41), monoclinic, space group C2/m (No. 12), with a = 23.340(8) A, b = 20.068(5) A, c = 7.472(2) A, beta = 99.27(3) degrees, V = 3453.8(2) A(3), and Z = 4.