In vivo performance, carcass and meat quality traits of slow-growing chickens stimulated in ovo with trans galactooligosaccharides (GOS) and exposed to heat stress were evaluated. On d 12 of egg incubation, 3,000 fertilized eggs (Hubbard JA57) were divided into prebiotic group (GOS) injected with 3.5 mg GOS/egg, saline group (S) injected with physiological saline (only to assess the hatchability rate) and an uninjected control group (C). After hatching, 600 male chicks (300 from GOS and 300 from C) were housed on floor pens (6 pens/treatment, 25 birds/pen) and reared under neutral (TN) or heat stress conditions (HS, 30°C from 36 to 50 d). BW, daily feed intake (DFI), daily weight gain (DWG), feed conversion rate (FCR), and mortality were measured. At 50 d of age, 15 randomly selected birds/treatment/environmental conditions were slaughtered and the pectoral muscle (PM) was collected for analyses. Hatchability was similar among groups. BW of the newly hatched chicks was lower (P < 0.01) in GOS compared to C. Final BW, DWG, DFI, and FCR were not affected (P > 0.05) by GOS. HS reduced final BW (−12.93%, P < 0.001). During finisher phase, DFI and DWG were lower (P < 0.001) and FCR was higher (P < 0.01) in HS compared to TN. Mortality was not affected (P > 0.05) by GOS and HS. Meat from GOS chickens had a higher (P < 0.01) pH and was darker (P < 0.05) compared to C. Proximate composition, cholesterol content, fatty acid profile, and intramuscular collagen properties of PM were not affected by GOS. The HS group showed a lower (P < 0.05) content of both collagen and monounsaturated fatty acids than TN group. Significant interactions between GOS and temperature were found for FA composition. In conclusion, the differences in performance have had an impact on the responses to HS in Hubbard chickens, but not on mortality rate. GOS did not relieve the negative effect of HS on chickens’ performance.