Providing clinicians with objective outcomes of neuromodulation therapy is a key unmet need, especially in emerging areas such as epilepsy and mood disorders. These diseases have episodic behavior and circadian/multidien rhythm characteristics that are difficult to capture in short clinical follow-ups. This work presents preliminary validation evidence for an implantable neuromodulation system with integrated physiological event monitoring, with an initial focus on seizure tracking for epilepsy. The system was developed to address currently unmet requirements for patients undergoing neuromodulation therapy for neurological disorders, specifically the ability to sense physiological data during stimulation and track events with seconds-level granularity. The system incorporates an interactive software tool to enable optimal configuration of the signal processing chain on an embedded implantable device (the Picostim-DyNeuMo Mk-2) including data ingestion from the device loop recorder, event labeling, generation of filter and classification parameters, as well as summary statistics. When the monitor parameters are optimized, the user can wirelessly update the system for chronic event tracking. The simulated performance of the device was assessed using an in silico model with human data to predict the real-time device performance at tracking recorded seizure activity. The in silico performance was then compared against its performance in an in vitro model to capture the full environmental constraints such as sensing during stimulation at the tissue electrode interface. In vitro modeling demonstrated comparable results to the in silico model, providing verification of the software tool and model. This study provides validation evidence of the suitability of the proposed system for tracking longitudinal seizure activity. Given its flexibility, the event monitor can be adapted to track other disorders with episodic and rhythmic symptoms represented by bioelectrical behavior.Clinical relevance-An implantable neuromodulation system is presented that enables chronic tracking of physiological events in disease. This physiological monitor provides the basis for longitudinal assessments of therapy outcomes for patients, such as those with epilepsy where objective identification of patient seizure activity and rhythms might help guide therapy optimization. The system is configurable for other disease states such as Parkinson's disease and mood disorders.