Intracerebral transplantation of neural stem cells (NSCs) for ischemic stroke treatment has been demonstrated to be inefficient, with only <5% of delivered cells being retained. Microcapsules may be a good carrier for NSC delivery; however, the current microcapsules do not fully meet the demands for cell survival after transplantation. In the present study, we designed a strategy for the encapsulation of NSCs in a novel lipid-alginate (L-A) microcapsule based on a two-step method. The protective effect of a L-A microcapsule on oxygen-glucose deprivation (OGD) was investigated by using the CCK8 test, the LDH release test, and flow cytometry. Mechanisms underlying the prosurvival effect were investigated by detecting autophagy markers like P62, LC3-I, and LC3-II, and autophagy flux analysis was also performed. Lastly, the ability of the L-A microcapsule to support NSCs delivery for ischemic stroke was investigated in the middle cerebral artery occlusion (MCAO) model. We found that L-A microcapsules exerted a good protective effect against OGD compared with control and alginate microcapsules. The L-A microcapsules were found to promote cell survival by not only providing a "physical" barrier but also altering autophagy markers like P62 and LC3-II, which enhanced autophagy flux. This novel microcapsule was confirmed to be suitable for NSC delivery in vivo, which alleviated transplanted NSC apoptosis, reduced the infarct volume, decreased brain edema, improved neurological deficit scores, and lastly, improved survival rate. The findings of this study may provide a new method for stem cell delivery, raising the prospect that intracerebral cell transplantation may be used to treat, for instance, ischemic stroke, traumatic brain injury, and so on.
Read full abstract