We investigated whether the elimination of two major enzymes responsible for triacylglycerol synthesis altered the structure and physical state of organelle membranes under mild heat shock conditions in the fission yeast, Schizosaccharomyces pombe. Our study revealed that key intracellular membrane structures, lipid droplets, vacuoles, the mitochondrial network, and the cortical endoplasmic reticulum were all affected in mutant fission yeast cells under mild heat shock but not under normal growth conditions. We also obtained direct evidence that triacylglycerol-deficient cells were less capable than wild-type cells of adjusting their membrane physical properties during thermal stress. The production of thermoprotective molecules, such as HSP16 and trehalose, was reduced in the mutant strain. These findings suggest that an intact system of triacylglycerol metabolism significantly contributes to membrane protection during heat stress.