The goal of this study was to explore the relationship between metal extracellular sorption, intracellular accumulation, and nitrification inhibition. Metal sorption on nitrifying biomass was rapid and could be described by linear partitioning with partition coefficients (Kp) of 20.3 +/- 0.1, 0.4 +/- 0.0, 0.1 +/- 0.0, and 0.2 +/- 0.0 L/g biomass chemical oxygen demand for Cu, Zn, Ni, and Cd, respectively. On the other hand, intracellular Zn, Ni, and Cd concentrations continued to increase with time beyond 12 h after metal addition, whereas intracellular Cu attained equilibrium after 4 h. Metal internalization kinetics could be described by an intraparticle diffusion model, with characteristic diffusion time constants (td) of 9.4, 64.6, 80.5, and 66.1 h for Cu, Zn, Ni, and Cd, respectively. Ultimate internalized percentages of the total cell-associated metal were 1.4 +/- 0.0, 4.3 +/- 0.5,7.6 +/- 1.0, and 2.7 +/- 0.2% for Cu, Zn, Ni, and Cd, respectively. Nitrification inhibition was not a function of the sorbed metal fraction but correlated well with intracellular Zn, Ni, or Cd fractions. An intraparticle diffusion model coupled with a saturation-type biological toxicity model fit the inhibition data for varying initial Cd concentrations and exposure periods. In contrast, no relationship between intracellular or sorbed Cu concentrations and nitrification inhibition was observed. In the presence of 1 mM Cu, less than 13.3 +/- 10.5% cells remained viable as compared to 72.8 +/- 7.5,104.8 +/- 1.7, and 84.7 +/- 7.0% (assumed 100% viable cells in metal-free control) in the presence of 1 mM Zn, Ni, and Cd, respectively. Hence, the observations that inhibition by metals such as Zn, Ni, and Cd is related to their intracellular fraction and the slow kinetics of metal internalization indicate that metal inhibition can easily be underpredicted from short-term batch assays. Furthermore, the inhibitory mechanism of Cu was very different from Zn, Ni, and Cd and may involve rapid loss of membrane integrity.