We studied the cellular regulation of vesicle exocytosis by Entamoeba histolytica utilizing release of endocytosed 125iodine (125I) labeled tyrosine conjugated dextran; 125I-dextran entered the acid pH vesicles of the amebae and was not degraded during these studies. Exocytosis was temperature dependent with 74%, 36%, 4%, and 0% of 125I-dextran released after 120 min at 37 degrees C, 31 degrees C, 25 degrees C, and 4 degrees C, respectively (P less than 0.01 for each). Exocytosis at 37 degrees C was inhibited by cytochalasin D (10 micrograms/ml), EDTA (10 mM), or the putative intracellular calcium antagonist TMB-8 (250 microM) (P less than 0.01 for each at greater than or equal to 60 min). Calcium ionophore A23187 (1 microM) enhanced exocytosis at 5 and 15 min (P less than 0.01). Elevation of vesicle pH with NH4Cl (10 mM) had no effect on release of 125I-dextran; phorbol myristate acetate (10(-6) M) increased exocytosis by 46% at 30 min (P less than 0.01). Centrifugation of amebae with target Chinese hamster ovary cells resulted in decreased 125I-dextran release into the cell supernatant after 30 and 60 min at 37 degrees C (by 40% and 42%, respectively, P less than 0.01); release of 125I-dextran returned to control values with addition of 1.0 g% galactose or GalNac but not with mannose or N-acetyl-D-glucosamine. Amebic phagocytosis of serum-exposed latex beads had no effect on release of dextran by amebae (n = 16). Exocytosis of acid pH vesicles by E. histolytica is temperature-, microfilament-, and calcium-dependent, and stimulated by phorbol esters.
Read full abstract