This study investigates the roles of ROS overproduction and MAPK signaling pathways in the induction of unfolded protein response (UPR) and the expression of Phase II enzymes in response to 4-hydroxy-trans-2-nonenal (4-HNE) in a neuronal-like catecholaminergic PC12 cells. Our results showed that 4-HNE triggered three canonical pathways of UPR, namely IRE1-XBP1, PERK-eIF2α-ATF4 and ATF6, and induced the expression of UPR-targeted genes, GRP78, CHOP, TRB3, PUMA, and GADD34, as well as Phase II enzymes, HO-1 and GCLC. 4-HNE also induced apoptosis, intracellular calcium accumulation, caspase-3 activation, and G0/G1 cell cycle arrest, which was correlated with the increased expression of GADD45α. The addition of tiron, a cellular permeable superoxide scavenger, scavenged 4-HNE-mediated ROS formation, but did not alleviate cytotoxicity, or the expression of UPR-targeted genes or Phase II enzymes, indicating that ROS overproduction per se did not play a major role in 4-HNE-caused deleterious effects. HO-1 expression was attenuated by Nrf2 siRNA and chemical chaperone 4-phenylbutyrate (4-PBA), suggesting HO-1 expression was regulated by Nrf2-ARE, which may work downstream of ER stress. 4-HNE treatment promptly induced ERK, JNK and p38 MAPK activation. Addition of p38 MAPK specific inhibitor SB203580 attenuated HO-1 upregulation, but enhanced expression of CHOP, PUMA and TRB3, and cytotoxicity. These results indicate that 4-HNE-induced transient p38 MAPK activation may serve as an upstream negative regulator of ER stress and confer adaptive cytoprotection against 4-HNE-mediated cell injury.
Read full abstract