Microbial interactions between infectious agents severely interfere with the disinfection process, and current disinfection methods are unable to effectively inactivate intracellular pathogens, posing a new threat to drinking water safety. In this study, we first reported the high efficiency of piezocatalysis in inactivating amoebae and their intracellular bacteria. Results showed that the inactivation rates of the MoS2/rGO piezocatalytic system for amoebic spores and their intracellular bacteria were 4.18 and 5.02-log, respectively, within 180min. Based on scavenger studies and ESR tests, the efficient inactivation of pathogens can be attributed to the generation of reactive oxygen species (ROS), and different pathogens exhibit varying tolerances to distinct ROS. Moreover, TEM analysis revealed that the sharp edge of MoS2/rGO was conducive to the physical cutting of amoeba's cell wall and membrane, promoting the attack of ROS and ensuring a more thorough deactivation. Additionally, the intracellular ROS produced by amoebae is not only conducive to the inactivation of amoebae but also the main reason for the inactivation of bacteria in spores. This study provides a new solution for the inactivation of amoeba spores and their intracellular bacteria and emphasizes the high efficiency of the synergistic effect of physical damage and chemical oxidation.
Read full abstract