Abstract

The Chlamydiaceae are a family of obligate intracellular bacteria known for their unique biphasic developmental cycle. Chlamydial are associated with various host organisms, including humans, and have been proposed as emerging pathogens. Genomic studies have significantly enhanced our understanding of chlamydial biology, host adaptation, and evolutionary processes. In this study, we conducted a complete pangenome association analysis (pan-GWAS) using 101 genomes from the Chlamydiaceae family to identify differentially represented genes in Chlamydia and Chlamydophila, revealing their distinct evolutionary strategies for interacting with eukaryotic hosts. Our analysis identified 289 genes with differential abundance between the two clades: 129 showed a strong association with Chlamydia and 160 with Chlamydophila. Most genes in Chlamydia were related to the type III secretion system, while Chlamydophila genes corresponded to various functional categories, including translation, replication, transport, and metabolism. These findings suggest that Chlamydia has developed a high dependence on mammalian cells for replication, facilitated by a complex T3SS for intracellular manipulation. In contrast, the metabolic and functional diversity in Chlamydophila allows it to colonize a broad range of hosts, such as birds, reptiles, amphibians, and mammals, making it a less specialized clade.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.