The advent of the Fourth Industrial Revolution has positioned the Internet of Things as a pivotal force in intelligent vehicles. With the source of vehicle-to-everything (V2X), Internet of Things (IoT) networks, and inter-vehicle communication, intelligent connected vehicles are at the forefront of this transformation, leading to complex vehicular networks that are crucial yet susceptible to cyber threats. The complexity and openness of these networks expose them to a plethora of cyber-attacks, from passive eavesdropping to active disruptions like Denial of Service and Sybil attacks. These not only compromise the safety and efficiency of vehicular networks but also pose a significant risk to the stability and resilience of the Internet of Vehicles. Addressing these vulnerabilities, this paper proposes a Dynamic Forest-Structured Ensemble Network (DFSENet) specifically tailored for the Internet of Vehicles (IoV). By leveraging data-balancing techniques and dimensionality reduction, the DFSENet model is designed to detect a wide range of cyber threats effectively. The proposed model demonstrates high efficacy, with an accuracy of 99.2% on the CICIDS dataset and 98% on the car-hacking dataset. The precision, recall, and f-measure metrics stand at 95.6%, 98.8%, and 96.9%, respectively, establishing the DFSENet model as a robust solution for securing the IoV against cyber-attacks.
Read full abstract