Abstract

Reinforcement learning (RL) methods for energy saving and greening have recently appeared in the field of autonomous driving. In inter-vehicle communication (IVC), a feasible and increasingly popular research direction of RL is to obtain the optimal action decision of agents in a special environment. This paper presents the application of reinforcement learning in the vehicle communication simulation framework (Veins). In this research, we explore the application of reinforcement learning algorithms in a green cooperative adaptive cruise control (CACC) platoon. Our aim is to train member vehicles to react appropriately in the event of a severe collision involving the leading vehicle. We seek to reduce collision damage and optimize energy consumption by encouraging behavior that conforms to the platoon's environmentally friendly aim. Our study provides insight into the potential benefits of using reinforcement learning algorithms to improve the safety and efficiency of CACC platoons while promoting sustainable transportation. The policy gradient algorithm used in this paper has good convergence in the calculation of the minimum energy consumption problem and the optimal solution of vehicle behavior. In terms of energy consumption metrics, the policy gradient algorithm is used first in the IVC field for training the proposed platoon problem. It is a feasible training decision-planning algorithm for solving the minimization of energy consumption caused by decision making in platoon avoidance behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.