Abstract In this paper we develop a stochastic simulation algorithm for electron transport in a DA-pHEMT heterostructure. Mathematical formulation of the problem of electron gas transport in the heterostructure in the form of a coupled system of Poisson, Schrödinger and kinetic Boltzmann equations is given. A Monte Carlo model of electron transport in DA-pHEMT heterostructures which accounts for multivalley parabolic band structure, as well as relevant formulas for calculating electron scattering rates and scattering phase functions on polar optical, intervalley phonons and on impurities are developed. The results of a computational experiment involving the solution of the system of Poisson–Schrödinger–Boltzmann equations for the AlGaAs/GaAs/InGaAs/GaAs/AlGaAs heterostructure are presented. The distribution of electrons by energy subband in the main and satellite valleys and the field dependences of the electron drift velocity in each valley are calculated. It was discovered that there is no spatial transfer of electrons into wide-gap AlGaAs layers due to high barriers created by modulated-doped impurities. A comparative analysis of the electron drift velocities in the studied DA-pHEMT heterostructures and in the unstrained layer of the InGaAs is given.
Read full abstract