Buildings can be made more user-friendly and secure by putting “smart” design strategies and technology processes in place. Such strategies and processes increase energy efficiency, make it possible to use resources rationally, and lower maintenance and construction costs. In addition to using wireless technologies and sensors to improve thermal, visual, and acoustic comfort, “smart” buildings are known for their energy, materials, water, and land management systems. Smart buildings use wireless technologies and sensors to improve thermal, visual, and acoustic comfort. These systems are known for managing energy, materials, water, and land. The task of the study is to consider the indicators that form the basis of the framework for evaluating intelligent buildings. The indicators for the development of “smart” buildings are classified into six categories in this paper: green building construction, energy management systems, safety and security management systems, occupant comfort and health, building automation and control management systems, and communication and data sharing. The paper aims to develop a scoring model for the smartness of public buildings. In developing the scoring system, the decision-making process requires an appropriate selection of the optimal solution. The contents of the research are the methods known as the Pythagorean Fuzzy Analytic Hierarchy Process (PF-AHP), Interval Valued Pythagorean Fuzzy AHP with differences (IVPF-AHP d), and the proposed method Interval Valued Pythagorean Fuzzy AHP (IVPF-AHP p). The research focuses on the IVPF-AHP as one of the methods of Multi-Criteria Decision-Making (MCDM) and its implementation. The comparative analysis of the three presented methods indicates a significant degree of similarity in the ranking, which confirms the ranking similarity. The results highlight the importance of bioclimatic design, smart metering, ecological materials, and renewable energy systems.