The purpose of this study was to (1) perform the first analysis of bone-derived DNA methylation, (2) compare DNA methylation clocks derived from bone with those derived from whole blood, and (3) establish a relationship between DNA methylation age and 1-year mortality within the geriatric hip fracture population. Patients ≥65 years old who presented to a Level-I trauma center with a hip fracture were prospectively enrolled from 2020 to 2021. Preoperative whole blood and intraoperative bone samples were collected. Following DNA extraction, RRBS (reduced representation bisulfite sequencing) libraries for methylation clock analysis were prepared. Sequencing data were analyzed using computational algorithms previously described by Horvath et al. to build a regression model of methylation (biological) age for each tissue type. Student t tests were used to analyze differences (Δ) in methylation age versus chronological age. Correlation between blood and bone methylation ages was expressed using the Pearson R coefficient. Blood and bone samples were collected from 47 patients. DNA extraction, sequencing, and methylation analysis were performed on 24 specimens from 12 subjects. Mean age at presentation was 85.4 ± 8.65 years. There was no difference in DNA extraction yield between the blood and bone samples (p = 0.935). The mean follow-up duration was 12.4 ± 4.3 months. The mortality cohort (4 patients, 33%) showed a mean ΔAgeBone of 18.33 ± 6.47 years and mean ΔAgeBlood of 16.93 ± 4.02 years. In comparison, the survival cohort showed a significantly lower mean ΔAgeBone and ΔAgeBlood (7.86 ± 6.7 and 7.31 ± 7.71 years; p = 0.026 and 0.039, respectively). Bone-derived methylation age was strongly correlated with blood-derived methylation age (R = 0.81; p = 0.0016). Bone-derived DNA methylation clocks were found to be both feasible and strongly correlated with those derived from whole blood within a geriatric hip fracture population. Mortality was independently associated with the DNA methylation age, and that age was approximately 17 years greater than chronological age in the mortality cohort. The results of the present study suggest that prevention of advanced DNA methylation may play a key role in decreasing mortality following hip fracture. Prognostic Level I. See Instructions for Authors for a complete description of levels of evidence.
Read full abstract