Qualified presentation of the topic "Tangent Plane and Surface Normal" in terms of competence approach is possible with the proper level for students' attention focusing on both intra-subject and inter-subject relations of descriptive geometry. Intra-subject connections follow from the position that the contingence is a particular (limit) case of intersection. Therefore, the line of intersection of the tangent plane and the surface, or two touching surfaces, has a special point at the tangency point. It is known from differential geometry [1] that this point can be nodal, return, or isolated one. In turn, this point’s appearance depends on differential properties of the surface(s) in this point’s vicinity. That's why, for the competent solution of the considered positional problem account must be also taken of the inter-subject connections for descriptive and differential geometry. In the training courses of descriptive geometry tangent planes are built only to the simplest surfaces, containing, as a rule, the frames of straight lines and circles. Therefore, the tangent plane is defined by two tangents drawn at the tangency point to two such lines. In engineering practice, as such lines are used cross-sections a surface by planes parallel to any two coordinate planes. That is, from the standpoints for the course of higher mathematics, the problem is reduced to calculation for partial derivatives. Although this topic is studied after the course of descriptive geometry, it seems possible to give geometric explanation for computation of partial derivatives in a nutshell. It also seems that the study of this topic will be stimulated by a story about engineering problems, which solution is based on construction of the tangent plane and the normal to the technical surface. In this paper has been presented an example for the use of surface curvature lines for programming of milling processing for 3D-harness surfaces.