The strength of the centrifugal pump is crucial to ensure the safe pump operating when endure to unintended pumping condition. The presence of the solid particles and sudden increase of pressure may lead to the damage on the casing of a centrifugal pump and it becomes critical when the thickness of the casing is thin. This study aims to investigate the effects of the thickness on the mechanical aspects such as stress, strain and displacement in the casing design by using finite element (FE) analysis. The structure of the pump casing with various thicknesses is analyzed via FE-based software. The correlation of the wall thickness with the mechanical aspects is studied. The critical region with high stress was spotted in the simulation. The simulation results revealed the wall thickness demonstrated a polynomial correlation to the displacement and strain. The stress of the casing showed the linear correlation with the thickness. The critical region was noticed at the intersection region of the pump casing. The mechanical aspects of the pump casing were improved with the increment of the wall thickness in the pump casing design.
Read full abstract