Lowering the cumulative radiation dose to a patient undergoing fluoroscopic examination requires efficient denoising algorithms. We propose a method, which extensively utilizes temporal dimension in order to maximize denoising efficiency. A set of subsequent images is processed and two estimates of denoised images are calculated. One is based on a special implementation of an adaptive edge preserving wavelet transform, while the other is based on the statistical method intersection of confidence intervals (ICI) rule. Wavelet transform is thought to produce high quality denoised images and ICI estimate can be used to further improve denoising performance about object edges. The estimates are fused to produce the final denoised image. We show that the proposed method performs very well and do not suffer from blurring in clinically important parts of images. As a result, its application could allow for significant lowering of the fluoroscope single frame dose.
Read full abstract