ABSTRACT This paper presents an image demosaicing based on an optimization-driven deep learning model, namely the Autoregressive Water Wave Optimization algorithm (Autoregressive-WWO). The proposed method is devised by assimilating the Wave Optimization algorithm (WWO), and the Conditional autoregressive value at risk (CAViaR) model. Here, the input images are subjected to Autoregressive WWO-based local polynomial approximation and intersection of confidence intervals (LPA-ICI) filter, and Deep Convolution neural network (Deep CNN) in a concurrent manner. The filter coefficients are obtained from the proposed Autoregressive WWO-based LPA-ICI filter and the residual image is obtained from Deep CNN. In order to create the demosaiced image, these two outputs are combined using an entropy measure. The proposed method offered superior performance with the highest Peak signal to noise ratio (PSNR) of 40.049dB, the highest Second derivative measure of enhancement (SDME) of 50.168dB, and highest Structural Index Similarity (SSIM) of 0.9056.
Read full abstract